题目内容
【题目】如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是 .(写出所有正确结论的序号)
①b>0
②a﹣b+c<0
③阴影部分的面积为4
④若c=﹣1,则b2=4a.
【答案】③④
【解析】
试题①首先根据抛物线开口向上,可得a>0;然后根据对称轴为x=﹣>0,可得b<0,据此判断即可.②根据抛物线y=ax2+bx+c的图象,可得x=﹣1时,y>0,即a﹣b+c>0,据此判断即可.③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是,判断出c=﹣1时,a、b的关系即可.∵抛物线开口向上,
∴a>0,又∵对称轴为x=﹣>0,∴b<0,∴结论①不正确;
∵x=﹣1时,y>0,∴a﹣b+c>0,∴结论②不正确;
∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax2+bx+c的最小值是y=﹣2,
∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确;
∵,c=﹣1,∴b2=4a,∴结论④正确.
练习册系列答案
相关题目
【题目】某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第天(为整数)的售价、销量及储存和损耗费用的相关信息如表所示.
时间(天) | ||
售价(元/斤) | 第1次降价后的价格 | 第2次降价后的价格 |
销量(斤) | ||
储存和损耗费用(元) |
已知该种水果的进价为4.1元/斤,设销售该水果第(天)的利润为(元),求与()之间的函数解析式,并求出第几天时销售利润最大.