题目内容
【题目】如图,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,OA=4,OC=3,点D为BC边上一点,以AD为一边在与点B的同侧作正方形ADEF,连接OE。当点D在边BC上运动时,OE的长度的最小值是________
【答案】5
【解析】
过点D作DG⊥OA,过点E作HE⊥DG.先证明△HED≌△GDA,从而得到HE=DG=3,HD=AG.设D(a,3),则DC=a,DH=AG=4-a,则E(a+3,7-a),依据两点间的距离公式可得到OE=,最后利用配方法求得被开方数的最小值即可.
如图所示:过点D作DG⊥OA,过点E作HE⊥DG.
∵DG⊥OA,HE⊥DG,
∴∠EHD=∠DGA=90°.
∴∠GDA+∠DAG=90°.
∵四边形ADEF为正方形,
∴DE=AD,∠HDE+∠GDA=90°.
∴∠HDE=∠GAD.
在△HED和△GDA中
,
∴△HED≌△GDA.
∴HE=DG=3,HD=AG.
设D(a,3),则DC=a,DH=AG=4-a.
∴E(a+3,7-a).
∴OE==
.
当a=2时,OE有最小值,最小值为5.