题目内容

【题目】某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.

(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?

(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.

①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?

②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?

【答案】(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.

【解析】1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;

(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;

②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.

(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,

根据题意可得,解得

答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;

(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,

根据题意可得 ,解得75<m≤78,

m为整数,

m的值为76、77、78,

∴进货方案有3种,分别为:

方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,

方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,

方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;

②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,

5>0,

Wm的增大而增大,且75<m≤78,

∴当m=78时,W最大,W最大值为1390,

答:当m=78时,所获利润最大,最大利润为1390元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网