题目内容
【题目】如图,过边长为3的等边三角形ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,问:若PA=CQ时,连接PQ交AC边于D,求DE的长?
【答案】
【解析】
过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE= AC即可.
过P作PF∥BC交AC于F.
∵PF∥BC,△ABC是等边三角形,
∴∠PFD=∠QCD,△APF是等边三角形,
∴AP=PF=AF,
∵PE⊥AC,
∴AE=EF,
∵AP=PF,AP=CQ,
∴PF=CQ.
在△PFD和△QCD中,
∴△PFD≌△QCD(AAS),
∴FD=CD,
∵AE=EF,
∴EF+FD=AE+CD,
∴AE+CD=DE=AC,
∵AC=3,
∴DE=.
练习册系列答案
相关题目