题目内容

【题目】△ABC中,∠C=90°DE垂直平分斜边AB,分别交ABBCDE.若∠CAB=∠B+30°CE=2cm

:1∠AEB 度数.

2BC的长.

【答案】见解析

【解析】

1)根据DE垂直平分斜边AB,可得EA=EB,从而∠EAB=B,结合条件可求出∠CAE=30°,然后可求∠AEB 度数;

2)在ACE中,∠C=90°,CAE=30°,所以AE=2CE=4,AE=BE,BC=CE+BE=6

1)解:∵DE垂直平分斜边AB

EA=EB

∴∠EAB=B

∵∠CAB=B+30°且∠CAB=CAE+EAB

∴∠CAE=30°

∴∠AEB=CAE+C=30°+90°=120°

2)在ACE中,

∵∠C=90°,CAE=30°,

AE=2CE=4,

又∵AE=BE,

BC=CE+BE=6cm

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网