题目内容
【题目】如图,AB是半圆O的直径,点D是半圆O上一点,点C是 的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.
(1)求证:GP=GD;
(2)求证:P是线段AQ的中点;
(3)连接CD,若CD=2,BC=4,求⊙O的半径和CE的长.
【答案】(1)证明见解析;(2)证明见解析;(3)半径为;CE=;
【解析】
(1)结合切线的性质以及已知得出∠GPD=∠GDP,进而得出答案;
(2)利用圆周角定理得出PA,PC,PQ的数量关系进而得出答案;
(3)直接利用勾股定理结合三角形面积进而得出答案.
(1)证明:连接OD,则OD⊥GD,∠OAD=∠ODA,
∵∠ODA+∠GDP=90°,∠EAP+∠GPD=∠EPA+∠EAP=90°,
∴∠GPD=∠GDP;
∴GP=GD;
(2)证明:∵AB为直径,
∴∠ACB=90°,
∵CE⊥AB于E,
∴∠CEB=90°,
∴∠ACE+∠ECB=∠ABC+∠ECB=90°,
∴∠ACE=∠ABC=∠CAP,
∴PC=PA,
∵∠ACB=90°,
∴∠CQA+∠CAP=∠ACE+∠PCQ=90°,
∴∠PCQ=∠CQA,
∴PC=PQ,
∴PA=PQ,即P为Rt△ACQ斜边AQ的中点;
(3)连接CD,
∵弧AC=弧CD,
∴CD=AC,
∵CD=2,
∴AC=2,
∵∠ACB=90°,
∴AB==,
故⊙O的半径为,
∵CE×AB=AC×BC,
∴CE=2×4,
∴CE=.
练习册系列答案
相关题目