题目内容
【题目】如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是( )
A.①③
B.②③
C.②④
D.②③④
【答案】D
【解析】解:①∵二次函数图象的开口向下, ∴a<0,
∵二次函数图象的对称轴在y轴右侧,
∴﹣ >0,
∴b>0,
∵二次函数的图象与y轴的交点在y轴的正半轴上,
∴c>0,
∴abc<0,故①错误;
②∵抛物线y=ax2+bx+c经过点(﹣1,0),
∴a﹣b+c=0,故②正确;
③∵a﹣b+c=0,∴b=a+c.
由图可知,x=2时,y<0,即4a+2b+c<0,
∴4a+2(a+c)+c<0,
∴6a+3c<0,∴2a+c<0,故③正确;
④∵a﹣b+c=0,∴c=b﹣a.
由图可知,x=2时,y<0,即4a+2b+c<0,
∴4a+2b+b﹣a<0,
∴3a+3b<0,∴a+b<0,故④正确.
故选D.
【考点精析】本题主要考查了二次函数图象以及系数a、b、c的关系的相关知识点,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)才能正确解答此题.
【题目】嘉兴教育学院大学生小王利用暑假开展了30天的社会实践活动,参与了嘉兴浙北超市的经营,了解到某成本为15元/件的商品在x天销售的相关信息,如表表示:
销售量p(件) | P=45﹣x |
销售单价q(元/件) | 当1≤x≤18时,q=20+x |
设该超市在第x天销售这种商品获得的利润为y元.
(1)求y关于x的函数关系式;
(2)在这30天中,该超市销售这种商品第几天的利润最大?最大利润是多少?