题目内容
【题目】工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
【答案】
(1)解:如图所示:
设裁掉的正方形的边长为xdm,
由题意可得(10﹣2x)(6﹣2x)=12,
即x2﹣8x+12=0,解得x=2或x=6(舍去),
答:裁掉的正方形的边长为2dm,底面积为12dm2
(2)解:∵长不大于宽的五倍,
∴10﹣2x≤5(6﹣2x),解得0<x≤2.5,
设总费用为w元,由题意可知
w=0.5×2x(16﹣4x)+2(10﹣2x)(6﹣2x)=4x2﹣48x+120=4(x﹣6)2﹣24,
∵对称轴为x=6,开口向上,
∴当0<x≤2.5时,w随x的增大而减小,
∴当x=2.5时,w有最小值,最小值为25元,
答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元
【解析】(1)由题意可画出图形,设裁掉的正方形的边长为xdm,则题意可列出方程,可求得答案;(2)由条件可求得x的取值范围,用x可表示出总费用,利用二次函数的性质可求得其最小值,可求得答案.
【题目】为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
组别 | 分数段 | 频次 | 频率 |
A | 60≤x<70 | 17 | 0.17 |
B | 70≤x<80 | 30 | a |
C | 80≤x<90 | b | 0.45 |
D | 90≤x<100 | 8 | 0.08 |
请根据所给信息,解答以下问题:
(1)表中a= , b=;
(2)请计算扇形统计图中B组对应扇形的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.