题目内容

如图,正方形ABCD的边长为2,点E是BC边的中点,过点B作BG⊥AE,
垂足为G,延长BG交AC于点F,则CF=         
延长BF交CD于H.根据勾股定理求得AC的长,根据ASA可以证明△ABE≌△BCH,则CH=BE=1,再根据相似三角形的性质解.
解:延长BF交CD于H.

在正方形ABCD中,正方形的边长是2,根据勾股定理,得AC=2
∵AB=BC,∠ABE=∠BCH=90°,∠BAE=∠CBH,
∴△ABE≌△BCH,
∴CH=BE=1.
∵AB∥CD,
∴△ABF∽△CHF,
=2,
∴CF=AC=
故答案为
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网