题目内容
(2011•重庆)如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.
(1)求EG的长;
(2)求证:CF=AB+AF.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230044273783934.jpg)
(1)求EG的长;
(2)求证:CF=AB+AF.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230044273783934.jpg)
(1)解:∵BD⊥CD,∠DCB=45°,
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC=
=2
,∵CE⊥BE,点G为BC的中点,∴EG=
BC=
.
答:EG的长是
.
(2)证明:在线段CF上截取CH=BA,连接DH,
∵BD⊥CD,BE⊥CE,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230044274564453.jpg)
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADB=∠HDC,
∵AD∥BC,
∴∠ADB=∠DBC=45°,
∴∠HDC=45°,∴∠HDB=∠BDC﹣∠HDC=45°,
∴∠ADB=∠HDB,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823004427394639.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823004427409387.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823004427425231.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823004427409387.gif)
答:EG的长是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823004427409387.gif)
(2)证明:在线段CF上截取CH=BA,连接DH,
∵BD⊥CD,BE⊥CE,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230044274564453.jpg)
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADB=∠HDC,
∵AD∥BC,
∴∠ADB=∠DBC=45°,
∴∠HDC=45°,∴∠HDB=∠BDC﹣∠HDC=45°,
∴∠ADB=∠HDB,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目