题目内容

【题目】阅读下面材料:
在数学课上,老师提出如下问题:∠AOB
尺规作图:做一个角等于已知角
已知:∠AOB
求做:一个角,使它等于∠AOB

小强的作法如下:
① 作射线O′A'
② 以O为圆心,任意长为半径作弧,交OA于C,交OB于D
③ 以O′为圆心,OC为半径作弧C′E′, 交弧O′A′于C′
④ 以C′为圆心,CD为半径作弧, 交弧C′E′于D′
⑤过点D′作射线O′B′
所以∠A′O′B′就是所求的角

老师说:“小强的作法正确.”
请回答:小强用直尺和圆规作图∠A′O′B′=∠AOB,根据三角形全等的判定方法中的
得出△D′O′C′≌△DOC,才能证明∠A′O′B′=∠AOB.

【答案】SSS
【解析】解:根据作图可得DO=D′O′,CO=C′O′,CD=C′D′,

∵在△COD和△C′O′D′中

∴△D′O′C′≌△DOC(SSS),

所以答案是:SSS.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网