题目内容
【题目】如图,已知直线y=+1与x轴、y轴分别交于点A、B,以线AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90o、点P(x、y)为线段BC上一个动点(点P不与B、C重合),设△OPA的面积为S。
(1)求点C的坐标;
(2)求S关于x的函数解析式,并写出x的的取值范围;
(3)△OPA的面积能于吗,如果能,求出此时点P坐标,如果不能,说明理由.
【答案】(1)(4,3);(2)S=, 0<x<4;(3)不存在.
【解析】
(1)直线y=+1与x轴、y轴分别交于点A、B,可得点A、B的坐标,过点C作CH⊥x轴于点H,如图1,易证△AOB≌△CHA,从而得到AH=OB、CH=AO,就可得到点C的坐标;
(2)易求直线BC解析式,过P点作PG垂直x轴,由△OPA的面积=即可求出S关于x的函数解析式.
(3)当S=求出对应的x即可.
解:(1)∵直线y=+1与x轴、y轴分别交于点A、B,
∴A点(3,0),B点为(0,1),
如图:过点C作CH⊥x轴于点H,
则∠AHC=90°.
∴∠AOB=∠BAC=∠AHC=90°,
∴∠OAB=180°-90°-∠HAC=90°-∠HAC=∠HCA.
在△AOB和△CHA中,
,
∴△AOB≌△CHA(AAS),
∴AO=CH=3,OB=HA=1,
∴OH=OA+AH=4
∴点C的坐标为(4,3);
(2)设直线BC解析式为y=kx+b,由B(0,1),C(4,3)得:
,解得,
∴直线BC解析式为,
过P点作PG垂直x轴,△OPA的面积=,
∵PG=,OA=3,
∴S==;
点P(x、y)为线段BC上一个动点(点P不与B、C重合),
∴0<x<4.
∴S关于x的函数解析式为S=, x的的取值范围是0<x<4;
(3)当s=时,即,解得x=4,不合题意,故P点不存在.