题目内容

如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦ADOC,弦DF⊥AB于点G.
(1)求证:点E是
BD
的中点;
(2)求证:CD是⊙O的切线;
(3)若sin∠BAD=
4
5
,⊙O的半径为5,求DF的长.
(1)证明:连接OD;
∵ADOC,
∴∠A=∠COB;(1分)
∵∠A=
1
2
∠BOD,
∴∠BOC=
1
2
∠BOD;
∴∠DOC=∠BOC;
DE
=
BE

则点E是
BD
的中点;(2分)

(2)证明:如图所示:
由(1)知∠DOE=∠BOE,(1分)
∵CO=CO,OD=OB,
∴△COD≌△COB;(2分)
∴∠CDO=∠B;
又∵BC⊥AB,
∴∠CDO=∠B=90°;
∴CD是⊙O的切线;(3分)

(3)在△ADG中,∵sinA=
DG
AD
=
4
5

设DG=4x,AD=5x;
∵DF⊥AB,
∴AG=3x;(1分)
又∵⊙O的半径为5,
∴OG=5-3x;
∵OD2=DG2+OG2
∴52=(4x)2+(5-3x)2;(2分)
∴x1=
6
5
,x2=0;(舍去)
∴DF=2DG=2×4x=8x=8×
6
5
=
48
5
(3分).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网