题目内容
【题目】如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么sin∠EFC的值为______.
【答案】
【解析】
先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=4,则CF=BC-BF=1,设CE=x,则DE=EF=3-x,然后在Rt△ECF中根据勾股定理得到x2+12=(3-x)2,解方程即可得到x,进一步得到EF的长,再根据正弦函数的定义即可求解.
解:∵四边形ABCD为矩形,
∴AD=BC=5,AB=CD=3,
∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
∴AF=AD=5,EF=DE,
在Rt△ABF中,∵BF=,
∴CF=BC-BF=5-4=1,
设CE=x,则DE=EF=3-x
在Rt△ECF中,∵CE2+FC2=EF2,
∴x2+12=(3-x)2,解得x=,
∴EF=3-x=,
∴sin∠EFC=.
故答案为:.
练习册系列答案
相关题目