题目内容

【题目】如图1,将一个正三角形绕其中心最少旋转,所得图形与原图的重叠部分是正六边形;如图2,将一个正方形绕其中心最少旋转 45°,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转______,所得图形与原图的重叠部分是正多边形.在图2中,若正方形的边长为,则所得正八边形的面积为_______

1 2

【答案】

【解析】

根据题意,可以发现正n边形绕其中心最少旋转,所得图形与原图的重叠部分是正2n边形;旋转后的正八变形相当于将正方形剪掉了的4个全等的等腰直角三角形,设等腰直角三角形的边长为x,则正八边形的边长为x;然后根据x+x+x=4求得x;最后用正方形的面积减去这八个等腰直角三角形的面积即可.

解:由题意得:正n边形绕其中心最少旋转,所得图形与原图的重叠部分是正2n边形;则将一个正七边形绕其中心最少旋转所得图形与原图的重叠部分是正多边形;

由题意得:旋转后的正八变形相当于将正方形剪掉了的4个全等的等腰直角三角形,

设等腰直角三角形的边长为x,则正八边形的边长为x

∴x+x+x=4,解得x=4-2

减去的每个等腰直角三角形的面积为:

正八边形的面积为:正方形的面积-4×等腰直角三角形的面积

=4×4-4

=

故答案为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网