题目内容
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a,b满足(a﹣3)2+|b﹣6|=0.现将线段AB向下平移3个单位,再向左平移2个单位,得到线段CD,点A,B的对应点分别为点C,D.连接AC,BD.
(1)如图①,求点C,D的坐标及四边形ABDC的面积;
(2)在y轴上是否存在一点M,使三角形MCD的面积与四边形ABDC的面积相等?若存在,求出点M的坐标,若不存在,试说明理由;
(3)如图②,点P是直线BD上的一个动点,连接PA,PO,当点P在直线BD上移动时(不与B,D重合),直接写出∠BAP,∠DOP,∠APO之间满足的数量关系.
【答案】(1)C(﹣2,0),D(4,0),S四边形ABDC=18;(2)M(0,6)或(0,﹣6);(3)①当点P在线段BD上移动时,∠APO=∠DOP+∠BAP;②当点P在DB的延长线上时,∠DOP=∠BAP+∠APO;③当点P在BD的延长线上时,∠BAP=∠DOP+∠APO.
【解析】
(1)根据非负数的性质分别求出a、b,根据平移规律得到点C,D的坐标,根据坐标与图形的性质求出S四边形ABCD;
(2)设M坐标为(0,m),根据三角形的面积公式列出方程,解方程求出m,得到点M的坐标;
(3)分点P在线段BD上、点P在DB的延长线上、点P在BD的延长线上三种情况,根据平行线的性质解答.
(1)∵,
∴,,
解得:,.
∴A(0,3),B(6,3),
∵将点A,B分别向下平移3个单位,再向左平移2个单位,分别得到点A,B的对应点C,D,
∴C(﹣2,0),D(4,0),
∴S四边形ABDC=;
(2)在y轴上存在一点M,使S△MCD=S四边形ABCD,
设M坐标为(0,m).
∵S△MCD=S四边形ABDC,
∴,
解得,
∴M(0,6)或(0,﹣6);
(3)①当点P在线段BD上移动时,,
理由如下:如图1,过点P作,
∵CD由AB平移得到,则,
∴,
∴,,
∴;
②当点P在DB的延长线上时, ;
理由如下:如图3,过点P作,
∵CD由AB平移得到,则,
∴,
∴,,
∴;
③当点P在BD的延长线上时,.
理由如下:如图4,过点P作,
∵CD由AB平移得到,则,
∴,
∴,,
∴;
【题目】滨海新区某中学为了了解学生每周在校体育锻炼的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了不完整的统计图表,请根据图表信息解答下列问题
时间(小时) | 频数(人数) | 百分比 |
2≤t<3 | 4 | 10% |
3≤t<4 | 10 | 25% |
4≤t<5 | a | 15% |
5≤t<6 | 8 | b% |
6≤t<7 | 12 | 30% |
合计 | 40 | 100% |
(1)表中的a= ,b= ;
(2)请将频数分布直方图补全;
(3)若绘制扇形统计图,时间段6≤x<7所对应扇形的圆心角的度数是多少?
(4)若该校共有1200名学生,估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?