题目内容
【题目】如图,已知抛物线经过点,.
(1)求的值,并将抛物线解析式化成顶点式;
(2)已知点,点为抛物线上一动点.求证:以为圆心,为半径的圆与直线相切;
(3)在(2)的条件下,点为抛物线上一动点,作直线,与抛物线交于点.当时,请直接写出直线的解析式.
【答案】(1),,;(2)证明见解析;(3)或.
【解析】
(1)利用待定系数法可求出b、c的值,再将抛物线的解析式化为顶点式即可;
(2)如图(见解析),由(1)可设点A的坐标为,再根据两点之间的距离公式可得,然后根据圆的切线的判定定理即可得证;
(3)如图(见解析),先根据正弦三角函数求出,从而可得,再利用正切三角函数可求出点H的坐标,然后利用待定系数法即可得;由根据二次函数的对称性可得点B关于二次函数对称轴的对称点也满足题设条件,利用同样的方法求解即可得另一条符合要求的直线BF的解析式.
(1)由题意,将点,代入抛物线解析式得:
解得:
则;
(2)过点作垂直于直线,垂足
设点A的坐标为
则
∴,即
∴是圆A的半径
∴以为圆心,为半径的圆与直线相切;
(3)如图,过点、分别作直线的垂线,垂足分别为、,过点作于点,则四边形CEDP是矩形
,轴
设,则
同(2)可得:,
∴,
在中,
∴
设直线BF与x轴的交点为点,过点F作轴于点N
则点N的坐标为,,
轴
在中,,即
解得,即点H的坐标为
设直线BF的解析式为
将点、代入得:,解得
则此时直线的解析式为
二次函数的对称轴为
点在这个二次函数的对称轴上
则由二次函数的对称性可知,图中点B关于对称轴为的对称点也一定在抛物线上,且满足
同理可得:此时点H的坐标为
设直线BF的解析式为
将点、代入得:,解得
则此时直线的解析式为
综上,直线的解析式为或.
练习册系列答案
相关题目