题目内容
【题目】如图,在平面直角坐标系中,直线交轴于点,交轴于点,正方形的点在线段上,点,在轴正半轴上,点在点的右侧,.将正方形沿轴正方向平移,得到正方形,当点与点重合时停止运动.设平移的距离为,正方形与重合部分的面积为.
(1)求直线的解析式;
(2)求点的坐标;
(3)求与的解析式,并直接写出自变量的取值范围.
【答案】(1);(2) ;(3) .
【解析】
(1)将A,E的坐标代入解析式即可解答
(2)根据题意可知CD=2,将其代入解析式,即可求出点C
(3)根据题意可分情况讨论:当时,;当时,,即可解答
(1)设直线的解析式为,因为经过点,点.
,解得:,∴.
(2)当时,,,
∴.
(3)当时,如图1.
点的横坐标为,点的横坐标为.
∴当时,,
∴,
∴当时,,
∴.
∴.
当时,如图2.
∴
综上.
练习册系列答案
相关题目