题目内容

【题目】对于钝角α,定义它的三角函数值如下:

sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)

(1)求sin120°,cos120°,sin150°的值;

(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及A和B的大小.

【答案】解:(1)由题意得,

sin120°=sin(180°﹣120°)=sin60°=

cos120°=﹣cos(180°﹣120°)=﹣cos60°=

sin150°=sin(180°﹣150°)=sin30°=

(2)三角形的三个内角的比是1:1:4,

三个内角分别为30°,30°,120°。

A=30°,B=120°时,方程的两根为

代入方程得:4×(2﹣m×﹣1=0,解得:m=0。

经检验是方程4x2﹣1=0的根。

m=0符合题意。

A=120°,B=30°时,两根为,不符合题意。

A=30°,B=30°时,两根为

代入方程得:4×(2﹣m×﹣1=0,解得:m=0。

经检验不是方程4x2﹣1=0的根。

综上所述:m=0,A=30°,B=120°。

【解析】

试题分析:(1)按照题目所给的信息求解即可;

(2)分三种情况进行分析:A=30°,B=120°时;A=120°,B=30°时;A=30°,B=30°时,根据题意分别求出m的值即可。 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网