ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬£¬²¢ÇÒÂú×ã.Ò»¶¯µã´Óµã³ö·¢£¬ÔÚÏ߶ÎÉÏÒÔÿÃë¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòµãÒƶ¯£»¶¯µã´Óµã³ö·¢ÔÚÏ߶ÎÉÏÒÔÿÃë¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòµãÔ˶¯£¬µã·Ö±ð´Óµãͬʱ³ö·¢£¬µ±µãÔ˶¯µ½µãʱ£¬µãËæֹ֮ͣÔ˶¯.ÉèÔ˶¯Ê±¼äΪ(Ãë)
(1)ÇóÁ½µãµÄ×ø±ê£»
(2)µ±ÎªºÎֵʱ£¬ËıßÐÎÊÇƽÐÐËıßÐΣ¿²¢Çó³ö´ËʱÁ½µãµÄ×ø±ê.
(3)µ±ÎªºÎֵʱ£¬ÊÇÒÔΪÑüµÄµÈÑüÈý½ÇÐΣ¿²¢Çó³ö´ËʱÁ½µãµÄ×ø±ê.
¡¾´ð°¸¡¿(1)£»(2)£»(3) »ò.
¡¾½âÎö¡¿
(1)Óɶþ´Î¸ùʽÓÐÒâÒåµÄÌõ¼þ¿ÉÇó³öa¡¢bµÄÖµ£¬ÔÙ¸ù¾ÝÒÑÖª¼´¿ÉÇóµÃ´ð°¸£»
(2)ÓÉÌâÒâµÃ£º£¬Ôò£¬µ±Ê±£¬ËıßÐÎÊÇƽÐÐËıßÐΣ¬Óɴ˿ɵùØÓÚtµÄ·½³Ì£¬Çó³ötµÄÖµ¼´¿ÉÇóµÃ´ð°¸£»
(3)·Ö¡¢Á½ÖÖÇé¿ö·Ö±ð»³ö·ûºÏÌâÒâµÄͼÐΣ¬
(1)ÓÉ£¬
Ôò£¬
£¬
¡ßAB//OC£¬A(0£¬12)£¬B(a£¬c)£¬
¡àc=12£¬
¡à£»
(2)Èçͼ£¬
ÓÉÌâÒâµÃ£º£¬
Ôò£º£¬
µ±Ê±£¬ËıßÐÎÊÇƽÐÐËıßÐΣ¬
£¬
½âµÃ£º£¬
£»
(3)µ±Ê±£¬¹ý×÷£¬ÔòËıßÐÎAOQNÊǾØÐΣ¬
¡àAN=OQ=t£¬QN=OA=12£¬
¡àPN=t£¬
ÓÉÌâÒâµÃ£º£¬
½âµÃ£º£¬
¹Ê£¬
µ±Ê±£¬¹ý×÷Öᣬ
ÓÉÌâÒâµÃ£º£¬
Ôò£¬
½âµÃ£º£¬
¹Ê.
¡¾ÌâÄ¿¡¿Ä³È˹º½øÒ»ÅúÇíÖÐÂ̳ȵ½Êг¡ÉÏÁãÊÛ£¬ÒÑÖªÂô³öµÄÂ̳ÈÊýÁ¿x(ǧ¿Ë)ÓëÊÛ¼Ûy(Ôª)µÄ¹ØϵÈçÏÂ±í£º
ÊýÁ¿x(ǧ¿Ë) | 1 | 2 | 3 | 4 | 5 | ¡ |
ÊÛ¼Ûy(Ôª) | 2+0.1 | 4+0.2 | 6+0.3 | 8+0.4 | 10+0.5 | ¡ |
(1)д³öÊÛ¼Ûy(Ôª)ÓëÂ̳ÈÊýÁ¿x(ǧ¿Ë)Ö®¼äµÄº¯Êý¹Øϵʽ£»
(2)Õâ¸öÈËÈôÂô³ö50ǧ¿ËµÄÂ̳ȣ¬ÊÛ¼ÛΪ¶àÉÙÔª£¿