题目内容
【题目】Rt△ABC中,∠C=90°,AC=3,BC=4,若以点C为圆心,r为半径,且⊙C与斜边AB有唯一公共点,求半径r的取值范围.
【答案】3<r≤4或r=2.4.
【解析】
先根据勾股定理求得AB=5,然后分两种情况:
(1)圆与AB相切时,即r=CD=3×4÷5=2.4;
(2)点A在圆内部,点B在圆上或圆外时,此时AC<r≤BC,即3<r≤4.
∴3<r≤4或r=2.4.
如图,∵BC>AC,
以C为圆心,r为半径所作的圆与斜边AB只有一个公共点.
根据勾股定理求得AB=5.
分两种情况:
(1)圆与AB相切时,即r=CD=3×4÷5=2.4;
(2)点A在圆内部,点B在圆上或圆外时,此时AC<r≤BC,即3<r≤4.
∴3<r≤4或r=2.4.
练习册系列答案
相关题目