题目内容
【题目】如图,矩形ABCD中,AB=4,BC=6,以A、D为圆心,半径分别为2和1画圆,E、F分别是⊙A、⊙D上的一动点,P是BC上的一动点,则PE+PF的最小值是( )
A.5B.6C.7D.8
【答案】C
【解析】
以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆D′,连接AD′交BC于P,交⊙A、⊙D′于E、F′,连接PD,交⊙D于F,EF′就是PE+PF最小值;根据勾股定理求得AD′的长,即可求得PE+PF最小值.
解:如图,以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆D′,连接AD’交BC于P,则EF′就是PE+PF最小值;
∵矩形ABCD中,AB=4,BC=6,圆A的半径为2,圆D的半径为1,
∴A′D′=BC=6,AA′=2AB=8,AE=2,D′F′=DF=1,
∴AD′=10,
EF′=10-2-1=7
∴PE+PF=PF′+PE=EF′=7,
故选:C.
练习册系列答案
相关题目
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于60元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)求售价为多少元时每天获得利润最大,最大利润是多少?