题目内容
【题目】已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.
(1)求抛物线的解析式;
(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:
①求证:BC平分∠MBN;
②求△MBC外心的纵坐标的取值范围.
【答案】(1)y=﹣x2+2;(2)①证明见解析;②﹣<y0≤0.
【解析】
(1)由A的坐标确定出c的值,根据已知不等式判断出y1-y2<0,可得出抛物线的增减性,确定出抛物线对称轴为y轴,且开口向下,求出b的值,如图1所示,可得三角形ABC为等边三角形,确定出B的坐标,代入抛物线解析式即可;
(2)①设出点M(x1,-x12+2),N(x2,-x22+2),由MN与已知直线平行,得到k值相同,表示出直线MN解析式,进而表示出ME,BE,NF,BF,求出tan∠MBE与tan∠NBF的值相等,进而得到BC为角平分线;
②三角形的外心即为三条垂直平分线的交点,得到y轴为BC的垂直平分线,设P为外心,利用勾股定理化简PB2=PM2,确定出△MBC外心的纵坐标的取值范围即可.
(1)∵抛物线过点A(0,2),
∴c=2,
当x1<x2<0时,x1-x2<0,由(x1-x2)(y1-y2)>0,得到y1-y2<0,
∴当x<0时,y随x的增大而增大,
同理当x>0时,y随x的增大而减小,
∴抛物线的对称轴为y轴,且开口向下,即b=0,
∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示,
∴△ABC为等腰三角形,
∵△ABC中有一个角为60°,
∴△ABC为等边三角形,且OC=OA=2,
设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°,
∴BD=OBcos30°=,OD=OBsin30°=1,
∵B在C的左侧,
∴B的坐标为(-,-1),
∵B点在抛物线上,且c=2,b=0,
∴3a+2=-1,
解得:a=-1,
则抛物线解析式为y=-x2+2;
(2)①由(1)知,点M(x1,-x12+2),N(x2,-x22+2),
∵MN与直线y=-2x平行,
∴设直线MN的解析式为y=-2x+m,则有-x12+2=-2x1+m,即m=-x12+2x1+2,
∴直线MN解析式为y=-2x-x12+2x1+2,
把y=-2x-x12+2x1+2代入y=-x2+2,解得:x=x1或x=2-x1,
∴x2=2-x1,即y2=-(2-x1)2+2=-x12+4x1-10,
作ME⊥BC,NF⊥BC,垂足为E,F,如图2所示,
∵M,N位于直线BC的两侧,且y1>y2,则y2<-1<y1≤2,且-<x1<x2,
∴ME=y1-(-1)=-x12+3,BE=x1-(-)=x1+,NF=-1-y2=x12-4x1+9,BF=x2-(-)=3-x1,
在Rt△BEM中,tan∠MBE=
在Rt△BFN中,tan∠NBF=
∵tan∠MBE=tan∠NBF,
∴∠MBE=∠NBF,
则BC平分∠MBN;
②∵y轴为BC的垂直平分线,
∴设△MBC的外心为P(0,y0),则PB=PM,即PB2=PM2,
根据勾股定理得:3+(y0+1)2=x12+(y0-y1)2,
∵x12=2-y1,
∴y02+2y0+4=(2-y1)+(y0-y1)2,即y0=y1-1,
由①得:-1<y1≤2,
∴-<y0≤0,
则△MBC的外心的纵坐标的取值范围是-<y0≤0.