题目内容
【题目】抛物线与轴交于A,B两点,与轴交于点C,连接BC.
(1)如图1,求直线BC的表达式;
(2)如图1,点P是抛物线上位于第一象限内的一点,连接PC,PB,当△PCB面积最大时,一动点Q从点P从出发,沿适当路径运动到轴上的某个点G处,再沿适当路径运动到轴上的某个点H处,最后到达线段BC的中点F处停止,求当△PCB面积最大时,点P的坐标及点Q在整个运动过程中经过的最短路径的长;
(3)如图2,在(2)的条件下,当△PCB面积最大时,把抛物线向右平移使它的图象经过点P,得到新抛物线,在新抛物线上,是否存在点E,使△ECB的面积等于△PCB的面积.若存在,请求出点E的坐标,若不存在,请说明理由.
【答案】(1)(2)点Q按照要求经过的最短路径长为(3)存在,满足条件的点E有三个,即(,),(,), (,)
【解析】
(1)先求出点,,的坐标,利用待定系数法即可得出结论;
(2)先确定出,再利用三角形的面积公式得出,即可得出结论;
(3)先确定出平移后的抛物线解析式,进而求出,在判断出建立方程即可得出结论.
解:(1)令,得,∴,.
∴ A(,0),B(,0).
令,得.
∴C(0,3).
设直线BC的函数表达式为,把B(,0)代入,得.
解得,.
所以直线BC的函数表达式为.
(2)过P作PD⊥轴交直线BC于M.
∵ 直线BC表达式为 ,
设点M的坐标为 ,则点P 的坐标为.
则.
∴.
∴此时,点P坐标为(,).
根据题意,要求的线段PG+GH+HF的最小值,只需要把这三条线段“搬”在一直线上.如图1,作点P关于轴的对称点,作点F关于轴的对称点,连接,交轴于点G,交轴于点H.根据轴对称性可得,.
此时PG+GH+HF的最小值=.
∵ 点P坐标为(,),∴ 点的坐标为(,).
∵ 点F是线段BC的中点,
∴ 点F的坐标为(,).
∴ 点的坐标为(,).
∵ 点,P两点的横坐相同,∴⊥轴.
∵ ,P两点关于轴对称,∴⊥轴.
∴ .
∴.
即点Q按照要求经过的最短路径长为.
(3)如图2,在抛物线中,
令,
,
或,
由平移知,抛物线向右平移到,则平移了个单位,,
设点,
过点作轴交于,
直线的解析式为,
,
的面积等于的面积,
,
由(2)知,,
,
,
或或或(舍,
,或,或,.
综上所述,满足条件的点E有三个,即(,),(,), (,).