题目内容
【题目】如图,在上依次有三点,的延长线交于过点作交的延长线于连交于点.
(1)求证:四边形是菱形;
(2)连接
当 时,点为弧的中点;
若且,则的半径是 .
【答案】(1)见解析;(2)①72°,②3
【解析】
(1) 先由一组对边平行且相等可得四边形ABCD是平行四边形,再结合AB=BC证明是菱形;
(2)由点为弧的中点推出∠AOF=∠EOF= m,设参数表示△OFA各个角,根据三角形内角和列方程计算即可;
由设参数证明△AOF是等边三角形即可.
(1)证明:∵,
∴∠CBD=∠ABD,
∵CD∥AB,
∴∠ABD=∠CDB,
∴∠CBD=∠CDB,
∴CB=CD,
∵BE是⊙O的直径,
∴,
∴AB=BC=CD,
∵CD∥AB,
∴四边形ABCD是菱形;
(2)①F为弧AE的中点,设∠AOF=∠EOF= m
∴∠ABE=∠ADE=m
∴∠OAF=∠OFA=2m
∵∠AOF+∠OAF+∠OFA=180°
∴2m+2m+m=180°
∴m=36°
∴∠ABE=72°
②∵∠AOF=3∠FOE,
设∠FOE=x,则∠AOF=3x,
∠AOD=∠FOE+∠AOF=4x,
∵OA=OF,
∴∠OAF=∠OFA=(180﹣3x)°,
∵OA=OB,
∴∠OAB=∠OBA=2x,
∴∠ABC=4x,
∵BC∥AD,
∴∠ABC+∠BAD=180°,
∴4x+2x+(180﹣3x)=180,
x=20°,
∴∠AOF=3x=60°,
∵OA=OF,
∴△AOF是等边三角形,
∴OF=AF=3,
图(1) 图(2)
【题目】某文具店每天售出甲、乙两种笔,统计后发现:甲、乙两种笔同一天售出量之间满足一次函数的关系,设甲、乙两种笔同一天的售出量分别为x(支)、y(支),部分数据如表所示(下表中每一列数据表示甲、乙两种笔同一天的售出量).
甲种笔售出x(支) | … | 4 | 6 | 8 | … |
乙种笔售出y(支) | … | 6 | 12 | 18 | … |
(1)求y关于x的函数关系式;(不需要写出函数的定义域)
(2)某一天文具店售出甲、乙两种笔的营业额分别为30元和120元,如果乙种笔每支售价比甲种笔每支售价多2元,那么甲、乙两种笔这天各售出多少支?
【题目】越野自行车是中学生喜爱的交通工具,市场巨大竞争也激烈.某品牌经销商经营的A型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.B型车是今年增加供应市场的,功能多售价也高些.
A、B两种型号车今年的进货和销售价格如下表:
A型车 | B型车 | |
进货价 | 1100元/辆 | 1400元/辆 |
销售价 | x元/辆 | 2000元/辆 |
(1)求今年A型车每辆销售价x的值;
(2)该品牌经销商计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,请问应如何安排两种型号车的进货数量,才能使这批车售出后获利最多?