题目内容
【题目】如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc>0;②0<<;③若点A(﹣3,y1),B(3,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有( )个.
A. 4B. 3C. 2D. 1
【答案】B
【解析】
根据题意画出抛物线的大致图象,利用函数图象,由抛物线开口方向得a>0,由抛物线的对称轴位置得b<0,由抛物线与y轴的交点位置得c<0,于是可对①进行判断;由于抛物线过点(-1,0)和(m,0),且1<m<2,根据抛物线的对称性和对称轴方程得到
0,则可对②进行判断;利用点A(-3,y1)和点B(3,y2)到对称轴的距离的大小可对进行判断;根据抛物线上点的坐标特征得a-b+c=0,am2+bm+c=0,两式相减得am2-a+bm+b=0,然后把等式左边分解后即可得到a(m-1)+b=0,则可对@进行判断;
解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴在y轴的右侧,
∴b<0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc>0,
∴①的结论正确;
∵抛物线过点(﹣1,0)和(m,0),且1<m<2,
∴ ,故②的结论正确;
∵点A(﹣3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,
∴y1>y2,
∴③的结论错误;
∵抛物线过点(﹣1,0),(m,0),
∴a﹣b+c=0,am2+bm+c=0,
∴am2﹣a+bm+b=0,
a(m+1)(m﹣1)+b(m+1)=0,
∴a(m﹣1)+b=0,
∴④的结论正确;
练习册系列答案
相关题目