题目内容

【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].
(1)如图①,对△ABC作变换[60°, ]得△AB′C′,则SAB′C′:SABC=;直线BC与直线B′C′所夹的锐角为度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.

【答案】
(1)3:1;60
(2)解:∵四边形 ABB′C′是矩形,

∴∠BAC′=90°.

∴θ=∠CAC′=∠BAC′﹣∠BAC=90﹣30=60°.

在 Rt△ABB′中,∠ABB'=90°,∠BAB′=60°,

∴∠AB′B=30°,

∴n= =2


(3)解:∵四边形ABB′C′是平行四边形,

∴AC′∥BB′,

又∵∠BAC=36°,

∴θ=∠CAC′=∠AC′B′=72°.

∴∠BB′A=∠BAC=36°,而∠B=∠B,

∴△ABC∽△B′BA,

∴AB:BB′=CB:AB,

∴AB2=CBBB′=CB(BC+CB′),

而 CB′=AC=AB=B′C′,BC=1,

∴AB2=1(1+AB),

∴AB=

∵AB>0,

∴n= =


【解析】解:(1)根据题意得:△ABC∽△AB′C′, ∴SAB′C′:SABC=( 2=( 2=3,∠B=∠B′,
∵∠ANB=∠B′NM,
∴∠BMB′=∠BAB′=60°;
所以答案是:3:1,60;

【考点精析】掌握平行四边形的性质和矩形的性质是解答本题的根本,需要知道平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;矩形的四个角都是直角,矩形的对角线相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网