题目内容
【题目】意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长值构造正方形,再分别依次从左到右取2个、3个、4个、5个…正方形拼成如上长方形,若按此规律继续作长方形,则序号为⑦的长方形周长是 .
【答案】110
【解析】解:由图可知,序号为①的矩形的宽为1,长为2,
序号为②的矩形的宽为2,长为3,3=1+2,
序号为③的矩形的宽为3,长为5,5=2+3,
序号为④的矩形的宽为5,长为8,8=3+5,
序号为⑤的矩形的宽为8,长为13,13=5+8,
序号为⑥的矩形的宽为13,长为21,21=8+13,
序号为⑦的矩形的宽为21,长为34,34=13+21,
所以,序号为⑦的矩形周长=2(34+21)=2×55=110.
所以答案是:110.
练习册系列答案
相关题目