题目内容
【题目】已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.且△OCP与△PDA的面积比为1:4
(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.
①求证:△OCP∽△PDA;
②求边AB的长;
(2)如图2,连结AP、BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.
【答案】
(1)
解:①如图1中,∵四边形ABCD是矩形,
∴∠C=∠D=90°,
∴∠DPA+∠DAP=90°,
∵由折叠可得∠APO=∠B=90°,
∴∠DPA+∠CPO=90°,
∴∠DAP=∠CPO,
又∵∠D=∠C,
∴△OCP∽△PDA;
②如图1,∵△OCP与△PDA的面积比为1:4,
∴ = = = ,
∴CP= AD=4,
设OP=x,则CO=8﹣x,
在Rt△PCO中,∠C=90°,
由勾股定理得 x2=(8﹣x)2+42,
解得:x=5,
∴AB=AP=2OP=10,
∴边AB的长为10
(2)
解:结论:线段EF的长度不发生变化.EF=2 .
理由:如图2中,作MQ∥AN,交PB于点Q,
∵AP=AB,MQ∥AN,
∴∠APB=∠ABP=∠MQP.
∴MP=MQ,
∵BN=PM,
∴BN=QM.
∵MP=MQ,ME⊥PQ,
∴EQ= PQ.
∵MQ∥AN,
∴∠QMF=∠BNF,
在△MFQ和△NFB中,
,
∴△MFQ≌△NFB(AAS),
∴QF=FB,
∴QF= QB,
∴EF=EQ+QF= PQ+ QB= PB,
由(1)中的结论可得:PC=4,BC=8,∠C=90°,
∴PB= =4 ,
∴EF= PB=2 ,
∴当点M、N在移动过程中,线段EF的长度不变,它的长度为2 .
【解析】(1)①只要证明∠PAD=∠CPO,由∠D=∠C=90°,即可证出△OCP∽△PDA;②根据△OCP与△PDA的面积比为1:4,得出CP= AD=4,设OP=x,则CO=8﹣x,由勾股定理得 x2=(8﹣x)2+42 , 求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ= PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF= QB,再求出EF= PB,由(1)中的结论求出PB,即可判断.