题目内容
【题目】如图,A,B是反比例函数y=(x>0)图象上的两点,分别过A,B两点向x轴,y轴作垂线段,AD,BE两垂线段交于点G.若图中阴影部分的面积为3,则△OAB的面积为( )
A.9B.10C.11D.12
【答案】D
【解析】
首先根据反比例函数图象上的点与坐标轴、向坐标轴作垂线所围成的矩形面积等于|k|,利用阴影部分的面积为3,推导出线段比例关系,比例关系转化为求矩形OFPK的面积,用割补法可求△OAB的面积.
解:
设FB与KA的延长线相交于点P,
HM垂直平分EK,
∵A,B是反比例函数y=(x>0)图象上的两点,
A点向x轴,y轴作垂线段分别是AD、AK
∴s矩形ODAK=|k|=9
同理:s矩形OFBE=9
∵s矩形ODGE=3
∴s矩形DFBG=s矩形EGAK=9﹣3=6
∵HM垂直平分EK
∴OE=EH=HK
∴s矩形OFPK=3s矩形OFBE=3×9=27
且s矩形AGBP=2s△ABP=12
即s△ABP=6
∴s△AOB=S矩OFPK-S△AOK -S△OFB-S△ABP=27﹣6﹣9=12
故选:D.
练习册系列答案
相关题目