题目内容
【题目】如图,AB是O的直径,AB=4,C为的三等分点(更靠近A点),点P是O上一个动点,取弦AP的中点D,则线段CD的最大值为( )
A.2B.C.D.
【答案】D
【解析】
取OA的中点Q,连接DQ,OD,CQ,根据条件可求得CQ长,再由垂径定理得出OD⊥AP,由直角三角形斜边中线等于斜边一半求得QD长,根据当C,Q,D三点共线时,CD长最大求解.
解:如图,取AO的中点Q,连接CQ,QD,OD,
∵C为的三等分点,
∴的度数为60°,
∴∠AOC=60°,
∵OA=OC,
∴△AOC为等边三角形,
∵Q为OA的中点,
∴CQ⊥OA,∠OCQ=30°,
∴OQ= ,
由勾股定理可得,CQ= ,
∵D为AP的中点,
∴OD⊥AP,
∵Q为OA的中点,
∴DQ= ,
∴当D点CQ的延长线上时,即点C,Q,D三点共线时,CD长最大,最大值为 .
故选D
练习册系列答案
相关题目