题目内容
【题目】已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于A(x1 , 0)、B(x2 , 0)(x1<x2)两点,与y轴交于点C,x1 , x2是方程x2+4x﹣5=0的两根.
(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函数的解析式.
【答案】
(1)
解:解方程x2+4x﹣5=0,得x=﹣5或x=1,
由于x1<x2,则有x1=﹣5,x2=1,∴A(﹣5,0),B(1,0).
抛物线的解析式为:y=a(x+5)(x﹣1)(a>0),
∴对称轴为直线x=﹣2,顶点D的坐标为(﹣2,﹣9a),
令x=0,得y=﹣5a,
∴C点的坐标为(0,﹣5a).
依题意画出图形,如右图所示,则OA=5,OB=1,AB=6,OC=5a,
过点D作DE⊥y轴于点E,则DE=2,OE=9a,CE=OE﹣OC=4a.
S△ACD=S梯形ADEO﹣S△CDE﹣S△AOC
= (DE+OA)OE﹣ DECE﹣ OAOC
= (2+5)9a﹣ ×2×4a﹣ ×5×5a
=15a,
而S△ABC= ABOC= ×6×5a=15a,
∴S△ABC:S△ACD=15a:15a=1:1
(2)
解:如解答图,过点D作DE⊥y轴于E
在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,
在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,
设对称轴x=﹣2与x轴交于点F,则AF=3,
在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2.
∵∠ADC=90°,∴△ACD为直角三角形,
由勾股定理得:AD2+CD2=AC2,
即(9+81a2)+(4+16a2)=25+25a2,化简得:a2= ,
∵a>0,
∴a= ,
∴抛物线的解析式为:y= (x+5)(x﹣1)= x2+ x﹣ .
【解析】(1)首先解一元二次方程,求出点A、点B的坐标,得到含有字母a的抛物线的交点式;然后分别用含字母a的代数式表示出△ABC与△ACD的面积,最后得出结论;(2)在Rt△ACD中,利用勾股定理,列出一元二次方程,求出未知系数a,得出抛物线的解析式.