题目内容
【题目】[发现]如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)
[思考]如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A, B,C三点的圆上吗?
我们知道,如果点D不在经过A,B,C三点的圆上,那么点D要么在圆O外,要么在圆O内,以下该同学的想法说明了点D不在圆O外。
请结合图④证明点D也不在⊙O内.
[结论]综上可得结论:如图②,如果∠ACB=∠ADB=a(点C,D在AB的同侧),那么点D在经过A,B,C三点的圆上,即:点A、B、C、D四点共圆。
[应用]利用上述结论解决问题:
如图⑤,已知△ABC中,∠C=90°,将△ACB绕点A顺时针旋转一个角度得△ADE,连接BE CD,延长CD交BE于点F,
(1)求证:点B、C、A、F四点共圆;
(2)求证:BF=EF.
图⑤
【答案】【思考】证明见解析;【应用】(1证明见解析;(2)证明见解析
【解析】试题分析:【思考】假设点D在⊙O内,利用圆周角定理及三角形外角的性质,可证得与条件相矛盾的结论,从而证得点D不在⊙O内;
[应用]
(1)由旋转的性质可得∠ACD=∠ABE,故B、C、A、F四点共圆,
(2)由圆内接四边形的性质得∠BCA+∠BFA=180°即可证明.
【思考】
【证】如图,假设点D在⊙O内,延长AD交⊙O于点E,连接BE;则∠AEB=∠ACB
∵∠ADB是△DBE的一个外角
∴∠ADB>∠AEB
∴∠ADB>∠ACB
这与条件∠ACB=∠ADB矛盾
∴点D不在⊙O内
【应用】【证】(1)∵AC=AD,AB=AE,
∴∠ACD=∠ADC,∠ABE=∠AEB,
∵∠CAB=∠DAE,
∴∠CAD=∠BAE,
∵2∠ACD+∠CAD=180°,2∠ABE+∠BAE=180°,
∴∠ACD=∠ABE,
∴B、C、A、F四点共圆,
(2)∵B、C、A、F四点共圆,
∴∠BFA+∠BCA=180°,
∵∠ACB=90°,∴∠BFA=90°,
∴AF⊥BE,
∵AB=AE,
∴BF=EF.