题目内容
【题目】某人承包了一池塘养鱼,他想估计一下收入情况.于是让他上初三的儿子帮忙.他儿子先让他从鱼塘里随意打捞上了60条鱼,把每条鱼都作上标记,放回鱼塘;过了2天,他让他父亲从鱼塘内打捞上了50条鱼,结果里面有2条带标记的.假设当时这种鱼的市面价为2.8元/斤,平均每条鱼估计2.3斤,你能帮助他估计一下今年的收入情况吗?
【答案】9660
【解析】试题分析:由最后捞出的鱼可知有标记的鱼的频率是=,再进一步求得池塘里鱼的总数,最后求出今年收入.
解:设池塘中共有鱼x条,
则=,得x=1500(条).
则池塘中鱼的总质量为1500×2.3=3450(斤),
则今年的收入约为3450×2.8=9660(元).
答:今年的收入约为9660元.
【题目】修正后的《水污染防治法》于2018年1月1日起施行,某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有两种型号的设备,其中每台的价格、月处理污水量如下表:
型 | 型 | |
价格(万元/台) | 12 | 10 |
处理污水量(吨/月) | 240 | 200 |
经预算,该企业购买设备的资金不高于105万元.
(1)请你设计该企业可能的购买方案;
(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案?请说明理由.
【题目】为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来, 制成如表:
汽车行驶时间 t(小时) | 0 | 1 | 2 | 3 | … |
油箱剩余油量 Q(升) | 100 | 94 | 88 | 82 | … |
(1)上表反映的两个变量中,自变量是 ,因变量是 ;
(2)根据上表可知,该车油箱的大小为 升,每小时耗油 升;
(3)请求出两个变量之间的关系式(用 t 来表示 Q).
【题目】数学活动课上,同学们探究了角平分线的作法.下面给出三个同学的作法:
小红的作法
如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,再过点O作MN的垂线,垂足为P,则射线OP便是∠AOB的平分线.
小明的作法 如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线. |
小刚的作法 如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,则射线OP便是∠AOB的平分线. |
请根据以上情境,解决下列问题
(1)小红的作法依据是 .
(2)为说明小明作法是正确的,请帮助他完成证明过程.
证明:∵OM=ON,OC=OC, ,
∴△OMC≌△ONC( )(填推理的依据)
(3)小刚的作法正确吗?请说明理由