题目内容
【题目】数学活动课上,同学们探究了角平分线的作法.下面给出三个同学的作法:
小红的作法
如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,再过点O作MN的垂线,垂足为P,则射线OP便是∠AOB的平分线.
小明的作法 如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线. |
小刚的作法 如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,则射线OP便是∠AOB的平分线. |
请根据以上情境,解决下列问题
(1)小红的作法依据是 .
(2)为说明小明作法是正确的,请帮助他完成证明过程.
证明:∵OM=ON,OC=OC, ,
∴△OMC≌△ONC( )(填推理的依据)
(3)小刚的作法正确吗?请说明理由
【答案】(1)等腰三角形三线合一定理;(2)CM=CN,边边边;(3)正确,证明见详解.
【解析】
(1)利用等腰三角形三线合一定理,即可得到结论成立;
(2)利用SSS,即可证明△OMC≌△ONC,补全条件即可;
(3)利用HL,即可证明Rt△OPM≌Rt△OPN,即可得到结论成立.
解:(1)∵OM=ON,
∴△OMN是等腰三角形,
∵OP⊥MN,
∴OP是底边上的高,也是底边上的中线,也是∠MON的角平分线;
故答案为:等腰三角形三线合一定理;
(2)证明:∵OM=ON,OC=OC,CM=CN,
∴△OMC≌△ONC(边边边);
∴∠MOC=∠NOC,
∴OC平分∠AOB;
故答案为:CM=CN,边边边;
(3)小刚的作法正确,证明如下:
∵PM⊥OA,PN⊥OB,
∴∠OMP=∠ONP=90°,
∵OM=ON,OP=OP,
∴Rt△OPM≌Rt△OPN(HL),
∴∠MOP=∠NOP,
∴OP平分∠AOB;
小刚的作法正确.