题目内容
【题目】如图,△ABC的面积为10cm2,BP平分∠ABC,AP⊥BP,垂足为P,连接CP,若三角形内有一点M,则点M落在△BPC内(包括边界)的概率为_____.
【答案】
【解析】
根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△PBC=S△ABC,根据概率公式可得的答案.
解:延长AP交BC于E,
∵BP平分∠ABC,
∴∠ABP=∠EBP,
∵AP⊥BP,
∴∠APB=∠EPB=90°,
在△ABP和△EBP中,
,
∴△ABP≌△EBP(ASA),
∴AP=PE,
∴S△ABP=S△EBP,S△ACP=S△ECP,
∴S△PBC=S△ABC=×10cm2=5cm2,
则点M落在△BPC内(包括边界)的概率为.
故答案为:.
练习册系列答案
相关题目
【题目】某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:
时间(小时) | 频数(人数) | 频率 |
2≤t<3 | 4 | 0.1 |
3≤t<4 | 10 | 0.25 |
4≤t<5 | a | 0.15 |
5≤t<6 | 8 | b |
6≤t<7 | 12 | 0.3 |
合计 | 40 | 1 |
(1)表中的a= ,b= ;
(2)请将频数分布直方图补全;
(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?