题目内容

【题目】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.

(1)求证:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度数.

【答案】(1)证明见解析;(2)69°.

【解析】试题分析:(1)根据已知条件易证∠BEO=∠1,根据等式的性质可得∠AEC=∠BED,利用ASA即可证明△AEC≌△BED;(2)由△AEC≌△BED可得EC=ED,∠C=∠BDE;△EDC中,根据等腰三角形的性质和三角形的内角和定理可求得∠C的度数,根据全等三角形的性质即可求得∠BDE的度数.

试题解析:

(1)证明:∵AEBD相交于点O, ∴∠AOD=∠BOE.

△AOD△BOE中, ∠A=∠B,

∴∠BEO=∠2.

∵∠1=∠2,

∴∠1=∠BEO, ∴∠AEC=∠BED.

△AEC△BED中,

∠A=∠B,AE=BE,∠AEC=∠BED,

∴△AEC≌△BED(ASA).

(2)∵△AEC≌△BED,

∴EC=ED,∠C=∠BDE.

△EDC中, ∵EC=ED,∠1=42°,

∴∠C=∠EDC=69°,

∴∠BDE=∠C=69°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网