题目内容

【题目】如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,A′BCABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当A′EF为直角三角形时,AB的长为_____

【答案】4

【解析】AEF为直角三角形时,存在两种情况:

①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;

②当∠A'FE=90°时,如图2,证明ABC是等腰直角三角形,可得AB=AC=4.

AEF为直角三角形时,存在两种情况:

①当∠A'EF=90°时,如图1,

.

∵△ABCABC关于BC所在直线对称,

A'C=AC=4,ACB=A'CB

∵点D,E分别为AC,BC的中点,

D、EABC的中位线,

DEAB

∴∠CDE=MAN=90°

∴∠CDE=A'EF

ACA'E

∴∠ACB=A'EC

∴∠A'CB=A'EC

A'C=A'E=4

RtA'CB中,∵E是斜边BC的中点,

BC=2A'E=8

由勾股定理得:AB2=BC2-AC2

AB=

②当∠A'FE=90°时,如图2,

.

∵∠ADF=A=DFB=90°

∴∠ABF=90°

∵△ABCABC关于BC所在直线对称,

∴∠ABC=CBA'=45°

∴△ABC是等腰直角三角形,

AB=AC=4;.

综上所述,AB的长为44;

故答案为:44.

练习册系列答案
相关题目

【题目】问题再现:

数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.

例如:利用图形的几何意义证明完全平方公式.

证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1

这个图形的面积可以表示成:

a+b2或 a2+2ab+b2

∴(a+b2 a2+2ab+b2

这就验证了两数和的完全平方公式.

类比解决:

1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)

问题提出:如何利用图形几何意义的方法证明:13+2332

如图2A表示11×1的正方形,即:1×1×113

B表示12×2的正方形,CD恰好可以拼成12×2的正方形,因此:BCD就可以表示22×2的正方形,即:2×2×223ABCD恰好可以拼成一个(1+2)×(1+2)的大正方形.

由此可得:13+23=(1+2232

尝试解决:

2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33   .(要求写出结论并构造图形写出推证过程).

3)问题拓广:

请用上面的表示几何图形面积的方法探究:13+23+33++n3   .(直接写出结论即可,不必写出解题过程)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网