题目内容
【题目】如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)若AB=25,BC=,求DE的长.
【答案】(1)证明见解析;(2)DE=.
【解析】(1)直接利用圆周角定理以及结合切线的判定方法得出DE是⊙O的切线;
(2)首先过点C作CG⊥DE,垂足为G,则四边形ODGC为正方形,得出tan∠CEG=tan∠ACB,,即可求出答案.
(1)如图,连接OD,
∵AC是⊙O的直径,
∴∠ABC=90°,
∵BD平分∠ABC,
∴∠ABD=45°,
∴∠AOD=90°,
∵DE∥AC,
∴∠ODE=∠AOD=90°,
∴DE是⊙O的切线;
(2)在Rt△ABC中,AB=2,BC=,
∴AC==5,
∴OD=,
过点C作CG⊥DE,垂足为G,
则四边形ODGC为正方形,
∴DG=CG=OD=,
∵DE∥AC,
∴∠CEG=∠ACB,
∴tan∠CEG=tan∠ACB,
∴,即,
解得:GE=,
∴DE=DG+GE=.
练习册系列答案
相关题目