题目内容
【题目】在四棱锥P﹣ABCD中,AD∥BC,AD=AB=DC= BC=1,E是PC的中点,面PAC⊥面ABCD.
(Ⅰ)证明:ED∥面PAB;
(Ⅱ)若PC=2,PA= ,求二面角A﹣PC﹣D的余弦值.
【答案】(Ⅰ)证明:取PB的中点F,连接AF,EF.
∵EF是△PBC的中位线,∴EF∥BC,且EF= .
又AD=BC,且AD= ,∴AD∥EF且AD=EF,
则四边形ADEF是平行四边形.
∴DE∥AF,又DE面ABP,AF面ABP,
∴ED∥面PAB;
(Ⅱ)解:法一、取BC的中点M,连接AM,则AD∥MC且AD=MC,
∴四边形ADCM是平行四边形,
∴AM=MC=MB,则A在以BC为直径的圆上.
∴AB⊥AC,可得 .
过D作DG⊥AC于G,
∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,
∴DG⊥平面PAC,则DG⊥PC.
过G作GH⊥PC于H,则PC⊥面GHD,连接DH,则PC⊥DH,
∴∠GHD是二面角A﹣PC﹣D的平面角.
在△ADC中, ,连接AE, .
在Rt△GDH中, ,
∴ ,
即二面角A﹣PC﹣D的余弦值 .
法二、取BC的中点M,连接AM,则AD∥MC,且AD=MC.
∴四边形ADCM是平行四边形,
∴AM=MC=MB,则A在以BC为直径的圆上,
∴AB⊥AC.
∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.
如图以A为原点, 方向分别为x轴正方向,y轴正方向建立空间直角坐标系.
可得 , .
设P(x,0,z),(z>0),依题意有 , ,
解得 .
则 , , .
设面PDC的一个法向量为 ,
由 ,取x0=1,得 .
为面PAC的一个法向量,且 ,
设二面角A﹣PC﹣D的大小为θ,
则有 ,即二面角A﹣PC﹣D的余弦值 .
【解析】(Ⅰ)取PB的中点F,连接AF,EF,由三角形的中位线定理可得四边形ADEF是平行四边形.得到DE∥AF,再由线面平行的判定可得ED∥面PAB;(Ⅱ)法一、取BC的中点M,连接AM,由题意证得A在以BC为直径的圆上,可得AB⊥AC,找出二面角A﹣PC﹣D的平面角.求解三角形可得二面角A﹣PC﹣D的余弦值.法二、由题意证得AB⊥AC.又面PAC⊥平面ABCD,可得AB⊥面PAC.以A为原点, 方向分别为x轴正方向,y轴正方向建立空间直角坐标系.求出P的坐标,再求出平面PDC的一个法向量,由图可得 为面PAC的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PC﹣D的余弦值.
【题目】4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 | ||
合计 |
(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |