题目内容
【题目】如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.
(1)求点C与点A的距离(精确到1km);
(2)确定点C相对于点A的方向.
(参考数据: ≈1.414, ≈1.732)
【答案】
(1)
解:如右图,过点A作AD⊥BC于点D,∠ABE=∠BAF=15°,
由图得,∠ABC=∠EBC﹣∠ABE=∠EBC﹣∠BAF=75°﹣15°=60°,
在Rt△ABD中,∵∠ABC=60°,AB=100,
∴BD=50,AD=50 ,
∴CD=BC﹣BD=200﹣50=150,
在Rt△ACD中,由勾股定理得:
AC= =100 ≈173(km).
答:点C与点A的距离约为173km.
(2)
解:在△ABC中,∵AB2+AC2=1002+(100 )2=40000,
BC2=2002=40000,
∴AB2+AC2=BC2,
∴∠BAC=90°,
∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.
答:点C位于点A的南偏东75°方向.
【解析】(1)作辅助线,构造直角三角形,解直角三角形即可;(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.
【考点精析】关于本题考查的勾股定理的概念和解直角三角形,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能得出正确答案.
【题目】近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:
年份 | 2014 | 2015 | 2016 | 2017(预计) |
快递件总量(亿件) | 140 | 207 | 310 | 450 |
电商包裹件(亿件) | 98 | 153 | 235 | 351 |
(1)请选择适当的统计图,描述2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);
(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?