题目内容

【题目】已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.

(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)若点P在线段AB上.
①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;
②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.

【答案】
(1)

解:∵四边形ABCD和四边形BPEF是正方形,

∴AB=BC,BP=BF,

∴AP=CF,

在△APE和△CFE中,

∴△APE≌△CFE,

∴EA=EC


(2)

解:①∵P为AB的中点,

∴PA=PB,又PB=PE,

∴PA=PE,

∴∠PAE=45°,又∠DAC=45°,

∴∠CAE=90°,即△ACE是直角三角形;

②∵EP平分∠AEC,EP⊥AG,

∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a

∵PE∥CF,

,即 =

解得,a= b;

作GH⊥AC于H,

∵∠CAB=45°,

∴HG= AG= ×(2 b﹣2b)=(2﹣ )b,又BG=2b﹣a=(2﹣ )b,

∴GH=GB,GH⊥AC,GB⊥BC,

∴∠HCG=∠BCG,

∵PE∥CF,

∴∠PEG=∠BCG,

∴∠AEC=∠ACB=45°.

∴a:b= :1;∴∠AEC=45°.


【解析】(1)根据正方形的性质和全等三角形的判定定理证明△APE≌△CFE,根据全等三角形的性质证明结论;(2)①根据正方形的性质、等腰直角三角形的性质解答;②根据PE∥CF,得到 ,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网