题目内容

【题目】如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.

【答案】
(1)证明:∵点D,E,F分别是AB,BC,CA的中点,

∴DE、EF都是△ABC的中位线,

∴EF∥AB,DE∥AC,

∴四边形ADEF是平行四边形;


(2)证明:∵四边形ADEF是平行四边形,

∴∠DEF=∠BAC,

∵D,F分别是AB,CA的中点,AH是边BC上的高,

∴DH=AD,FH=AF,

∴∠DAH=∠DHA,∠FAH=∠FHA,

∵∠DAH+∠FAH=∠BAC,

∠DHA+∠FHA=∠DHF,

∴∠DHF=∠BAC,

∴∠DHF=∠DEF.


【解析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.
【考点精析】掌握直角三角形斜边上的中线和三角形中位线定理是解答本题的根本,需要知道直角三角形斜边上的中线等于斜边的一半;连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网