题目内容
【题目】如图,△ABC中,∠ACB=90°,AC=8cm,BC=6cm.点P从A点出发沿A→C→B路径以每秒1cm的运动速度向终点B运动;同时点Q从B点出发沿B→C→A路径以每秒vcm的速度向终点A运动.分别过P和Q作PE⊥AB于E,QF⊥AB于F.
(1)设运动时间为t秒,当t= 时,直线BP平分△ABC的面积.
(2)当Q在BC边上运动时(t>0),且v=1时,连接AQ、连接BP,线段AQ与BP可能相等吗?若能,求出t的值;若不能,请说明理由.
(3)当Q的速度v为多少时,存在某一时刻(或时间段)可以使得△PAE与△QBF全等.
【答案】(1)4;(2)当Q在BC边上运动时(t>0),且v=1时、线段AQ与BP不可能相等;(3)当v=cm/s时.t=时,△PAE与△QBF全等.
【解析】
(1)根据三角形的中线分三角形面积相等的两部分,可得当AP=PC时,直线BP平分△ABC的面积由此即可解决问题.
(2) 假设可能相等,利用勾股定理构建方程即可解决问题.
(3)分两种情形: ①当点Q在线段BC上时,PA=BQ时,△AEP≌△FQB, ②当P,Q在AC边上相遇时,且PA=PB时, △PAE与△QBF全等.分别求解即可解决问题.
解:(1)当AP=PC时,直线BP平分△ABC的面积.此时t=4.
故答案为4.
(2)假设可能相等.则有82+(6﹣t)2=62+(8﹣t)2,
解得t=0,不符合题意,
所以当Q在BC边上运动时(t>0),且v=1时、线段AQ与BP不可能相等.
(3)①当点Q在线段BC上时,
在Rt△AEP和Rt△BFQ中,
∵∠AEP=∠BFQ=90°,∠C=90°,
∴∠A+∠B=90°,∠B+∠BQF=90°,
∴∠A=∠BQF,
∴当PA=BQ时,△AEP≌△FQB,
∴当v=1cm/s时,0<t≤6时,△PAE与△QBF全等.
②当P,Q在AC边上相遇时,且PA=PB时,△PAE与△QBF全等.设此时PA=PB=x,
在Rt△PBC中,∵PB2=PC2+BC2,
∴x2=(8﹣x)2+62,
∵当P,Q在AC边上相遇,可得
解得
∴当v=cm/s时.t=时,△PAE与△QBF全等.