题目内容
【题目】如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( )
A.4ac﹣b2<0 B.a﹣b+c<0 C.2a+b<0 D.abc<0
【答案】B.
【解析】
试题解析:∵抛物线与x轴有两个交点,
∴b2-4ac>0,即b2>4ac,所以A选项错误;
∵抛物线开口向上,
∴a>0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴ac<0,所以B选项错误;
∵二次函数图象的对称轴是直线x=1,
∴-=1,∴2a+b=0,所以C选项错误;
∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,
∴抛物线与x轴的另一个交点为(-1,0),
∴a-b+c=0,所以B选项正确;
故选B.
练习册系列答案
相关题目