题目内容
【题目】如图,在△ABC中,△ABC的角平分线OB与角平分线OC相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.
(1)请写出图中所有的等腰三角形;
(2)若AB+AC=14,求△AMN的周长.
【答案】(1)△MBO和△NOC是等腰三角形;(2)14
【解析】
试题分析:(1)由OB平分∠ABC,得到∠MBO=∠OBC,根据平行线的性质得到∠MOB=∠OBC,等量代换得到∠MBO=∠MOB,于是得到结论;
(2)由OB平分∠ABC,得到∠MBO=∠OBC,根据平行线的性质得到∠MOB=∠OBC,等量代换得到∠MBO=∠MOB,得到MO=MB,同理可证:ON=NC,根据周长的计算公式得到结论.
解:(1)△MBO和△NOC是等腰三角形,
∵OB平分∠ABC,
∴∠MBO=∠OBC,
∵MN∥BC,
∴∠MOB=∠OBC,
∴∠MBO=∠MOB,
∴MO=MB,
同理可证:ON=NC,
∴△MBO和△NOC是等腰三角形;
(2)∵OB平分∠ABC,
∴∠MBO=∠OBC,
∵MN∥BC,
∴∠MOB=∠OBC,
∴∠MBO=∠MOB,
∴MO=MB,
同理可证:ON=NC,
∵△AMN的周长=AM+MO+ON+AN,
∴△AMN的周长=AM+MB+AN+NC=AB+AC=14.
练习册系列答案
相关题目