题目内容
【题目】如图,在矩形ABMN中,AN=1,点C是MN的中点,分別连接AC,BC,且BC=2,点D为AC的中点,点E为边AB上一个动点,连接DE,点A关于直线DE的对称点为点F,分别连接DF,EF.当EF⊥AC时,AE的长为________.
【答案】或
【解析】
首先证明∠CAB=∠CBA=30°.分两种情形画出图形分别求解即可.
解:∵四边形ABMN是矩形,
∴AN=BM=1,∠M=∠N=90°,
∵CM=CN,
∴△BMC≌△ANC(SAS),
∴BC=AC=2,
∴AC=2AN,
∴∠ACN=30°,
∵AB∥MN,
∴∠CAB=∠CBA=30°,
①如图1中,当DF⊥AB时,∠ADF=60°,
∵DA=DF,
∴△ADF是等边三角形,
∴∠AFD=60°,
∵∠DFE=∠DAE=30°,
∴EF平分∠AFD,
∴EF⊥AD,此时AE=.
②如图2中,当△AEF是等边三角形时,EF⊥AC,此时EF=.
综上所述,满足条件的EF的值为或.
练习册系列答案
相关题目