题目内容
【题目】已知:△ABC为等边三角形,点D、E分别在BC和AC上,并且CD=AE,连接AD、BE相交于点N,过点B作BM⊥AD于点M.
(1)求证:BE=AD
(2)若NE=2,MN=5,求AD的长
【答案】(1)证明见解析;(2)AD=12.
【解析】
(1)根据等边三角形的性质可得,AB=AC,∠BAE=∠C,然后利用SAS即可证得;
(2)根据全等三角形的性质,以及三角形的外角的性质求得∠BNM=60,然后根据直角三角形的性质求得BN的长,则AB即可求得,根据AD=BE即可求得.
(1) 证明:∵△ABC为等边三角形,
∴∠BAC=∠C=60°AB=CA ∠BAE=∠C,AE=CD,
∴△ABE≌△CAD
∴BE=AD
(2) ∵△ABE≌△CAD,
∴∠ABE=∠CAD,
∴∠BND=∠CAD +∠BAD=∠BAC=60°,
∴∠MBN=30°,
∴BN=2MN=2×5=10,
∴BE=12,
∴AD=12,
【题目】本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:
地点 | 票价 |
历史博物馆 | 10元/人 |
民俗展览馆 | 20元/人 |
(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?
(2)若学生都去参观历史博物馆,则能节省票款多少元?
【题目】2018年10月17日是我国第五个“扶贫日”,某校学生会干部对学生倡导的“扶贫”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图,(图中信息不完整),已知A.B两组捐款人数的比为1:5.
被调查的捐款人数分组统计表:
组别 | 捐款额x/元 | 人数 |
A | 1≤x<10 | a |
B | 10≤x<20 | 100 |
C | 20≤x<30 | ______ |
D | 30≤x<40 | ______ |
E | 40≤x | ______ |
请结合以上信息解答下列问题:
(1)求a的值和参与调查的总人数;
(2)补全“被调查的捐款人数分组统计图1”并计算扇形B的圆心角度数;
(3)已知该校有学生2200人,请估计捐款数不少于30元的学生人数有多少人?