题目内容
【题目】如图,ABCD中,E为AD的中点,直线BE、CD相交于点F.连接AF、BD.
(1)求证:AB=DF;
(2)若AB=BD,求证:四边形ABDF是菱形.
【答案】(1)见解析;(2)见解析.
【解析】
(1)由平行四边形的性质和已知条件得出∠ABE=∠DFE,AE=DE,由AAS证明△ABE≌△DFE即可证得结论;
(2)由全等三角形的性质得出AB=DF,证出四边形ABDF是平行四边形,再由AB=BD,即可得出结论.
(1)∵四边形ABCD为平行四边形,
∴AB∥CD.
∵点F在CD的延长线上,
∴FD∥AB.
∴∠ABE=∠DFE.
∵E是AD中点,
∴AE=DE.
在△ABE和△DFE中,
,
∴△ABE≌△DFE(AAS)
∴AB=DF;
(2)∵△ABE≌△DFE,
∴AB=DF.
∵AB∥DF,AB=DF,
∴四边形ABDF是平行四边形.
∵AB=BD,
∴四边形ABDF是菱形.
练习册系列答案
相关题目