题目内容
【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①AE=CF;②∠APE=∠CPF;③△EPF是等腰三角形;④EF=AP;⑤S四边形AEPF=S△APC.当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),其中正确的序号有________________.
【答案】①②③⑤
【解析】∵AB=AC,∠BAC=90°,点P是BC的中点,
∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF是直角,
∴∠APF+∠APE=90°,∴∠APE=∠CPF,故②正确,
在△APE和△CPF中,
,
∴△APE≌△CPF(ASA),
∴AE=CF,故①正确,∴△EFP是等腰直角三角形,故③正确,
根据等腰直角三角形的性质,EF=PE,
所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=PE=AP,
在其它位置时EF≠AP,故④错误,
∵△APE≌△CPF,
∴S△APE=S△CPF,
∴S四边形AEPF=S△APF+S△APE=S△APF+S△CPF=S△APC=S△ABC,故⑤正确,综上所述,故答案为:①②③⑤.
练习册系列答案
相关题目